Friday 19 J une 2015 - Morning

GCSE TWENTY FIRST CENTURY SCIENCE

 PHYSICS A/FURTHER ADDITIONAL SCIENCE AA183/01 Module P7 (Foundation Tier)

Candidates answer on the Question Paper. A calculator may be used for this paper.

OCR supplied materials:
None
Other materials required:

- Pencil
- Ruler ($\mathrm{cm} / \mathrm{mm}$)

Duration: 1 hour

| Candidate
 forename | Candidate
 surname | |
| :--- | :--- | :--- | :--- |

Centre number						Candidate number				

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the boxes above. Please write clearly and in capital letters.
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Answer all the questions.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Write your answer to each question in the space provided. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
- Do not write in the bar codes.

INFORMATION FOR CANDIDATES

- The quality of written communication is assessed in questions marked with a pencil ($)$.
- A list of useful relationships is printed on pages 2 and 3.
- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is $\mathbf{6 0}$.
- This document consists of 16 pages. Any blank pages are indicated.

TWENTY FIRST CENTURY SCIENCE EQUATIONS

Useful relationships

The Earth in the Universe

distance $=$ wave speed \times time
wave speed $=$ frequency \times wavelength

Sustainable energy

energy transferred $=$ power \times time
power $=$ voltage \times current
efficiency $=\frac{\text { energy usefully transferred }}{\text { total energy supplied }} \times 100 \%$

Explaining motion

speed $=\frac{\text { distance travelled }}{\text { time taken }}$
acceleration $=\frac{\text { change in velocity }}{\text { time taken }}$
momentum $=$ mass \times velocity
change of momentum $=$ resultant force \times time for which it acts
work done by a force $=$ force \times distance moved in the direction of the force
amount of energy transferred = work done
change in gravitational potential energy $=$ weight \times vertical height difference
kinetic energy $=\frac{1}{2} \times$ mass $\times\left[\right.$ velocity ${ }^{2}$

Electric circuits

power $=$ voltage \times current
resistance $=\frac{\text { voltage }}{\text { current }}$
$\frac{\text { voltage across primary coil }}{\text { voltage across secondary coil }}=\frac{\text { number of turns in primary coil }}{\text { number of turns in secondary coil }}$

Radioactive materials

```
energy = mass \times [speed of light in a vacuum] }\mp@subsup{}{}{2
```


Observing the Universe

lens power $=\frac{1}{\text { focal length }}$
magnification $=\frac{\text { focal length of objective lens }}{\text { focal length of eyepiece lens }}$
speed of recession $=$ Hubble constant \times distance
pressure \times volume $=$ constant
$\frac{\text { pressure }}{\text { temperature }}=$ constant
$\frac{\text { volume }}{\text { temperature }}=$ constant
energy $=$ mass $\times[\text { speed of light in a vacuum }]^{2}$

Answer all the questions.

1 Most large modern telescopes use a mirror to focus the parallel light rays from stars.
(a) Draw a diagram of a telescope mirror to show how the parallel light rays come to a focus.
(b) What is the name for what happens to the light at the mirror?

Put a ring around your answer.
absorption diffraction reflection refraction
(c) Why do most astronomical telescopes use mirrors instead of lenses?

Put ticks $(\boldsymbol{\checkmark})$ in the boxes next to the two correct answers.

Lenses can only be supported at the edges.
Light is absorbed by mirrors.

Mirrors only work when flat.

Mirrors can be made bigger than lenses.

Lenses don't bend light rays. \square
(d) Why are modern telescopes so large?

Put ticks (\boldsymbol{J}) in the boxes next to the two correct answers.

Large telescopes are easy to move about.

Large telescopes are very expensive.
Large telescopes can collect more light. \square
Large telescopes can be used to observe microbes.
Large telescopes can be used to see very distant objects. \square
(e) The eyepieces of telescopes are made using lenses.

What is the power of a lens with a focal length of 2 metres?

> power =
\qquad dioptres

2 A star is made from a cloud of gas.
The first stage of a star is called a protostar.
Describe how a protostar forms and what is happening to the gas particles inside the protostar. You should include ideas about temperature, pressure and volume.

The quality of written communication will be assessed in your answer.
\qquad

3 (a) (i) The Sun, Moon and stars all appear to move across the sky. In which direction do they move?

Put a ring around your answer.

```
east to west north to south south to north west to east
```

(ii) Why do the stars appear to move across the sky?
\qquad
(iii) Here are some data about the Sun, Moon and stars.

	Distance from Earth	Time to travel once across the sky and return to the same position
Moon	380000 km	27 days
Sun	150000000 km	24 hours
Stars	more than 3 light years	23 hours 56 minutes

Do the data show a relationship? Justify your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Johannes Kepler found a relationship between the distance from the Sun and the time it takes the planets to orbit the Sun.

The table shows data for some of the planets.

	Distance (D) from Sun in astronomical units (au)	$\mathbf{D}^{\mathbf{3}}$ in au $\mathbf{3}^{\mathbf{3}}$	Time (T) to orbit the Sun in years	$\mathbf{T}^{\mathbf{2} \text { in years }{ }^{\mathbf{2}}}$
Mercury	0.39	0.05	0.24	0.06
Venus	0.72	0.37	0.62	0.38
Earth	1.00	1.00	1.00	1.00
Mars	1.52	3.50	1.88	3.53

Some of the data have been plotted on the graph.

(i) Plot the points for Earth and Mars on the graph.
(ii) Draw a line of best fit on the graph.
(iii) The asteroid Geographos has an average distance from the Sun of 1.25 au .

This gives a value of $1.95 \mathrm{au}^{3}$ for D^{3}.
Use the graph to find T^{2} for the asteroid.
\qquad
$\mathrm{T}^{2}=$ years ${ }^{2}$
[Total: 9]

4 Cepheid variable stars are important in measuring distances to galaxies.
(a) Complete the sentences about Cepheid variables. Use words from the list.

brightness

distance
luminosity
period
shape
Cepheid variables pulse in brightness.
By comparing a Cepheid variable's observed \qquad as seen from Earth, with its luminosity, the \qquad of the Cepheid variable can be found.

The \qquad of the pulsing brightness is related to the
(b) A scientist measures the distance to four Cepheid variables in a galaxy.

Distance to Cepheid variable in megaparsecs
0.83
0.77
0.74
0.82

(i) Calculate the mean distance of the Cepheid variables.
mean distance $=$ \qquad megaparsecs
(ii) Here is a table of the distance to some nearby galaxies.

Galaxy	Distance to galaxy in megaparsecs
Wolf-Lundmark	0.97
Andromeda	0.79
Triangulum	0.81
Cetus dwarf	0.75

In which galaxy are the Cepheid variables most likely to be?
\qquad
(iii) How many parsecs are equal to one megaparsec?

Put a ring around your answer.
$10010001000000 \quad 100000000$
(c) Calculate the speed of recession of a distant galaxy that is 500 megaparsecs away. The Hubble constant is $70 \mathrm{~km} / \mathrm{s}$ per megaparsec.

5 Astronomers use the method of parallax to measure the distance to nearby stars.
(a) Describe how parallax is used to measure the distance to nearby stars. Include a labelled diagram in your answer.

The quality of written communication will be assessed in your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Calculate the distance to a star with a parallax angle of 0.2 seconds of arc.

6 The picture shows a radio telescope.

In 1967 a scientist used a radio telescope and recorded a regular series of pulses, one every 1.33 seconds, coming from the sky. She took more readings over a number of nights. The signal came from a location that moved across the sky with the stars.

Observations made with another telescope confirmed the pulses existed, with the same location in the sky and with the same timing.
(a) Why did the scientist repeat the readings over a number of nights?
\qquad
(b) At first the scientist thought the signal might be a fault in the radio telescope.

How could the scientist be sure this was not the explanation for the pulses?
\qquad
\qquad
(c) Some people suggested that this signal was from extraterrestrial life, an alien civilisation.
(i) Would it be a good idea to send a signal back to an alien civilisation? You should justify your answer by considering the possible advantages and disadvantages.
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) What evidence of extraterrestrial life have scientists found?
\qquad
(iii) Over the last few years scientists have found objects in space that they think make it much more likely that extraterrestrial life exists.

What objects have scientists found?
\qquad
\qquad
(d) Scientists eventually agreed that the signal came from a spinning neutron star.

How are neutron stars formed?
\qquad

7 Most major astronomical observatories are in very isolated places on high mountains.
(a) Which two of the following are examples of places with major optical and infrared astronomical observatories?

Put rings around the two correct answers.
Canada
Canary Islands
Chile
London
The North Sea
(b) Explain why observatories are built on isolated high mountains. You should consider both advantages and disadvantages of the isolated high location. Suggest, with a justification, an alternative location.

The quality of written communication will be assessed in your answer.
\qquad

PLEASE DO NOT WRITE ON THIS PAGE

OCR

Oxford Cambridge and RSA

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.
For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE
OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.
© OCR 2015

